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Abstract— In this paper, we derive a novel analytical expression for random coding error exponent of a dual-hop 
amplify and-forward wireless communication system over independent and identically distributed α-µ fading 
channels. Random coding error exponent is an information theoretic performance measure which gives an insight 
into the fundamental trade-off between the achievable rate of information and the reliability of communication. It 
can be used to find the length of the code-word required to achieve a pre-determined probability of error at a rate 
below the capacity of the channel. Furthermore, the derived random coding error exponent expression is utilized to 
derive closed form expressions for the cutoff rate and the capacity of the system. Moreover, the derived 
expressions can be reduced to study the performance of the system over Nakagami-m, Weibull, One-sided 
Gaussian, Rayleigh, and Negative Exponential fading models which are included in the α-µ fading model as 
special cases. Numerical results are further presented to corroborate the analysis. 
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I. INTRODUCTION 

There have been recent growing interests in both academia and industry in integrating multi-
hop relaying into the next generation infrastructure-based networks such as 5G technology 
and sensor networks. Multi-hop communications can be realized through the use of low-
power, low-cost relays or through other wireless terminals in the network, where information 
is passed between two terminals (nodes) over multi-hop transmission. 
Recently, a variant of multi-hop relaying, known as cooperative diversity or relay-assisted 
networks, has emerged. Generally, it is used in infrastructure-less based networks as a 
promising approach to increase spectral and power efficiency, network coverage, and reduce 
outage probability. Similar to multi-antenna transceivers, relays provide diversity by creating 
multiple replicas of the signal of interest. The basic idea behind relay-assisted networks is that 
various terminals/nodes in a relay network attempt to assist each other in moving information 
around the network instead of competing for system resources. The result is an improvement 
of the overall quality of services (such as the statistical measures of bit-error-rate, outage, 
throughput, and delay) at all the nodes and an associated increase in system spectral 
efficiency. Two common relaying techniques are the decode-and-forward (DF) and the 
amplify-and-forward (AF). In DF relaying, the relay terminal decodes a received signal; and 
then re-encodes it (possibly using a different codebook) for transmission to a destination. 
With the AF relaying, the relay terminal re-transmits a scaled version of the received signal 
without any attempt to decode it. 
There have been recent results reported in the literature on the error rate performance in dual-
hop transmission, which is a special case of a multi-hop transmission. In [1], the authors 
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derived closed form expressions for the average bit error rate and the outage probability of AF 
dual-hop systems in α-µ channels. The same authors, in [2], derived closed form expressions 
for the capacity and outage capacity under the same scenario in [1]. 
Since a random coding error exponent serves as a tight lower bound for Shannon’s error 
exponent which is also known as Shannon’s reliability function. A random coding error 
exponent reveals the fundamental tradeoff between communication rate and reliability. It 
gives the best exponential decay in the probability of an error with the code-word length at a 
communication rate below the capacity of the channel. It shows that the probability of a 
decoding error decreases exponentially with the length of the code-word as well as the code 
rate; hence it can be used to find the length of the required code to achieve a pre-determined 
probability of an error at a rate below the capacity of the channel. Random coding error 
exponent expressions can be also used to derive expressions for the capacity, critical rate, and 
cut off rate of the system. 
Performance analysis of AF dual-hop communication systems utilizing the error exponent has 
been studied in [3], [4]. In [3], the authors derive the random coding error exponent for a 
dual-hop AF system assuming an ideal relay, which is capable of inverting the channel of the 
independent previous hop over and identically distributed (i.i.d) Nakagami-m fading channels. 
The exact random coding error exponent for dual-hop AF systems with channel state 
information (CSI) assisted relay without avoiding the denominator noise figure has been 
derived in [4] which assumes independent but not necessarily identical Rayleigh fading 
channels. In [5], the authors derive exact expressions for a random coding error exponent of 
dual-hop AF systems over η−µ fading channels. In [6], the authors derive an analytical 
expression for a random coding error exponent of space time block code (STBC) systems 
over η-µ fading channels. In [7], the authors derive the random coding error exponent of AF 
systems in presence of arbitrary number of i.i.d interferers at the relay and destination. In [8], 
the authors provide analytical expressions for a random coding error exponent of multiple-
input-multiple-output (MIMO)-STBC systems over both η-µ and block fading channels. In 
[9], the authors derive the random coding exponent for Rayleigh fading multi-input multi-
output channel equipped with an automatic repeat request (ARQ) protocol. 
Although there is a growing body of literature on the analysis of the random coding error 
exponent in relay communications, to the best of our knowledge, there has been no result 
reported in the literature which considers the random coding error exponent in α-µ channels. 
The α-µ distribution is a general fading distribution used to characterize small scale variations 
of fading signals in non-linear of sight communications [10]. The α-µ distribution assumes µ 
clusters of multipath signals propagating in a non-homogeneous medium; and it represents the 
envelope of the fading signal as a non-linear function of the amplitude of the multipath 
clusters. The uniqueness of the α-µ distribution over other general fading distributions like the 
η-µ and the κ-µ comes from the distribution parameter α which explores the non-linearity of 
the propagation medium. The Nakagami-m, Weibull, One-sided Gaussian, Rayleigh, and 
Negative Exponential distributions are special cases of the α-µ distribution. However, the α-µ 
distribution fits experimental data better than the previously mentioned distributions. 
In this paper, we aim to fill this research gap and derive the random coding error exponent in 
α-µ channels. Our contributions in this work are summarized as follows: We first derive the 
random coding error exponent for AF dual-hop system operating over i.i.d α-µ fading 
channels. Then we use the random coding error exponent to derive closed form expressions 
for the cutoff rate and capacity of the system. It is noteworthy mentioning here that the 
derived expressions can be reduced to study the random coding error exponent of AF dual-
hop systems over other fading channel models like Nakagami-m, Weibull, One-sided 
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Gaussian, Rayleigh, and Negative Exponential, a contribution that is missing from the 
literature. 

II. SYSTEM AND CHANNEL MODELS 

We consider a dual-hop wireless communication system with a single AF relay. AF multi-hop 
communication systems can be further divided into two major groups based on the 
amplification gain of the relay, namely, fixed gain relays and variable gain relays. In this 
paper, we will concentrate on variable gain relays which are capable of inverting the channel 
gain of the previous hop regardless of its magnitude. Given that, the end-to-end signal-to-
noise ratio can be upper-bounded as in [11] by: 

1 2

1 2
eq

γ γγ
γ γ

=
+                                                                                                                        (1) 

where γi is the instantaneous signal to noise ratio (SNR) of the i-th hop link, which is assumed 
to be distributed according to the α-µ fading model with a probability density function (pdf) 
given as in [12] by: 
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where γ is the average SNR; and Γ(.) is the well-known Gamma function. The α-µ distribution 
is a general fading distribution that can be reduced to other fading models such as Nakagami-
m (α= 2 and µ= m), Rayleigh (α= 2 and µ= 1), Weibull (α= β and µ= 1), and one-sided 
Gaussian (α= 1 and µ= 1). 
Assuming that both links are independent and identically distributed then the pdf of the end-
to-end SNR can be expressed as in [2], by: 
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is the Meijer’s G-function as in [13]; and γ is the average SNR per hop. 

III. RANDOM CODING ERROR EXPONENT ANALYSIS 

The error exponent along with the codeword length imposes a tight upper bound on the 
probability of an error for a communication channel [14]-[17]. Hence, it can be used to 
indicate the coding requirements to achieve a predefined level of bit error rate at an 
information rate below capacity. The random coding error exponent serves as a lower bound 
for the reliability function which is also known as error exponent. The random coding error 
exponent for the predefined dual-hop AF system model, assuming Gaussian input distribution, 
can be expressed as in [14] by: 
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and R is the transmission rate in nats/s/Hz. 
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Substituting (3) into (5) yields: 

                 
(6)

 
then we can express [18]: 
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Then, the integral I becomes 
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Using the Meijer’s G-function properties, the integral I can be rewritten as follows: 
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which can be solved as follows [18]: 
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Substituting the result (10) for the integral I into (6) yields: 
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A. Special Cases from (11) 

• Rayleigh Fading (α=2, µ=1): The result for Rayleigh fading model can be obtained by 
setting the appropriate fading parameters in (11), which results in: 
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• Nakagami-m Fading (α=2, µ=m): The result for the Nakagami-m fading can be 

obtained by setting α=2 in (11), and µ is the same as the fading parameter m. 
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This is exactly the result reported in [3]. 

• Weibull Fading (µ=1): The result for Weibull fading can be obtained by setting µ=1 
in (11); and  is the same as the fading parameter β: 
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B. System Capacity and Cutoff Rate 

The random coding error exponent can be used to find the capacity of the system which is 
defined as the maximum achievable rate. It can be expressed as in [14] by: 
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This can be solved in [2] as: 
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Since the cutoff rate is defined as the maximum practical transmission rate for possible 
decoding strategies, thus for dual hop α−µ fading channels, the cutoff rate in nats/s/Hz can be 
given as 
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which follows directly from the fact that 1

2 (1).o oR E=  It can be easily shown that (18) can be 
directly simplified by substituting α=2 and µ=m for Nakagami-m fading channels [3]. 

IV. NUMERICAL RESULTS 

In this section, we evaluate the random coding error exponent for different values of the 
fading parameters (α and µ) and for different values of the average signal-to-noise ratio (SNR) 
per hop. Fig. 1 shows how the random coding error exponent changes versus the rate R at an 
average SNR per hop ( 20dBγ = ) and (α=2) for different values of µ (Nakagami-m fading 
with µ=m). It is clearly seen from Fig. 1 that the random coding error exponent increases (i.e. 
probability of error decreases) with µ (less fading) at any rate below the capacity of the 
channel. It can be also seen from the figure that the same level of communication reliability 
(i.e. fixed random coding error exponent) can be achieved at higher rates for larger values of 
µ. For example, to achieve a random coding error exponent of 0.5 the rate has to be reduced 
from 0.8 nats/sec/Hz when α=2 and µ=1 (Rayleigh fading) to 0.4 nats/sec/Hz when α=2 and 
µ=0.5 (more fading than Rayleigh fading). 
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Fig. 1. Random coding error exponent versus R when α=2, 20dBγ = , and for different values of µ 

 
In Fig. 2, the random coding error exponent is plotted versus the rate R when α=3 and µ=1 
(Weibull fading with β=1.5) and for different values of the average SNR per hopγ . It is 
clearly seen from Fig. 2 that as the average SNR per hop increases, the random coding error 
exponent at rates below the capacity also increases. This also means a decrease in the 
probability of error. Fig. 2 shows that for the same value of the random coding error exponent 
(or bit error rate), higher rates (or longer code-words) can be achieved as the average SNR per 
hop increases. Fig. 3 shows the cutoff rate versus γ  when µ=2 and α=2, 2.5, 3, and 4. The 
figure clearly shows that higher cutoff rates can be achieved at the sameγ  when α increases 
(i.e. less amount of fading). Fig. 3 also shows that the cutoff rate increases with γ for all 
values of α. 

 
Fig. 2. Random coding error exponent versus R when α=3, µ=1, and for different values of γ  
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Fig. 3. Cutoff rate (R0) versus γ  when µ=2, and for different values of α 

 

V. CONCLUSIONS 

In this paper, we have derived novel analytical expressions for the random coding error 
exponent, cutoff rate, and capacity of dual-hop AF wireless communication systems over 
independent and identically distributed α-µ fading channels. The derived expressions were 
reduced to study the performance of the system over Weibull, Rayleigh, and Nakagami-m 
fading channels as special cases. Numerical results were provided to show the effects of the 
average per hop SNR and the fading parameters on the performance of the system. 
 
REFERENCES 

[1] A. Magableh, T. Aldalgamouni, and N. Jafreh, "Performance of dual-hop wireless 
communication systems over the α−µ fading channels," Electronics, vol. 101, no. 6, pp. 808-
819, 2014. 

[2] A. Magableh, T. Aldalgamouni, and N. Jafreh, "Capacity analysis of dual-hop wireless 
communication systems over α-µ fading channels," Computers and Electrical Engineering, 
vol. 40, no. 2, pp. 399-406, 2014. 

[3] H. Ngo, T. Quek, and H. Shin, "Random coding error exponent for dual-hop nakagami-m 
fading channels with amplify-and-forward relaying," IEEE Communications Letters, vol. 13, 
no. 11, pp. 823-825, 2009. 

[4] B. Barua, M. Abolhasan, F. Safaei, and D. Franklin, "On the error exponent of amplify and 
forward relay networks," IEEE Communications Letters, vol. 15, no. 10, pp. 1047-1049, 2011. 



132                              © 2019 Jordan Journal of Electrical Engineering. All rights reserved - Volume 5, Number 2 
 

[5] J. Xue, Y. Zhang, M. Sarkar, and T. Ratnarajah, "Error exponents analysis for dual-hop η-µ 
fading channel with amplify-and-forward relaying," Proceedings of IEEE Wireless 
Communications and Networking Conference, pp. 1105-109, 2014. 

[6] J. Zhang, M. Matthaiou, G. Karagiannidis, Z. Tan, and H. Wang, "Gallager’s error exponent 
analysis of stbc systems over η-µ fading channels," Proceedings of IEEE International 
Conference on Communications, pp. 5829-5834, 2013. 

[7] B. Barua, F. Safaei, and M. Abolhasan, "Error exponent of amplify and forward relay 
networks in presence of i.i.d. interferers," Proceedings of IEEE 80th Vehicular Technology 
Conference, pp. 1-5, 2014. 

[8] J. Zhang, M. Matthaiou, G. Karagiannidis, H. Wang, and Z. Tan, "Gallager’s exponent 
analysis of stbc mimo systems over η-µ and κ-µ fading channels," IEEE Transactions on 
Communications, vol. 61, no. 11, pp. 1028-1039, 2013. 

[9] H. Ebrahimzad, A. Mohammadi, and A. Khandani, "On the error exponent of mimo-arq 
system over the fast fading channels," European Transactions on Telecommunications, vol. 22, 
no. 8, pp. 451-457, 2011. 

[10] M. Yacoub, "The α−µ distribution: A physical fading model for the stacy distribution," IEEE 
Transactions on Vehicular Technology, vol. 56, no. 1, pp. 27-34, 2007. 

[11] M. Hasna and M. Alouini, "Outage probability of multihop transmission over nakagami fading 
channels," IEEE Communications Letters, vol. 7, no. 5, pp. 216-218, 2003. 

[12] A. Magableh and M. Matalgah, "Moment generating function of the generalized α-µ 
distribution with applications," IEEE Communications Letters, vol. 13, no. 6, pp. 411-413, 
2009. 

[13] V. Adamchik and O. Marichev, "The algorithm for calculating integrals of hypergeometric 
type functions and its realization in reduce system," Proceedings of the International 
Symposium on Symbolic and Algebraic Computation, pp. 212-224, 1990. 

[14] R. Gallager, Information Theory and Reliable Communication, New York: Wiley, 1968. 

[15] W. Ahmed and P. Mclane, "On the error exponent for memoryless flat fading channels with 
channel-state-information feedback," IEEE Communications Letters, vol. 3, no. 2, pp. 49-51, 
1999. 

[16] W. Ahmed and P. Mclane, "Random coding error exponents for two-dimensional flat fading 
channels with complete channel state information," IEEE Transactions on Information Theory, 
vol. 45, no. 4, pp. 1338-1346, 1999. 

[17] H. Shin and M. Win, "Gallager’s exponent for mimo channels: a reliability-rate tradeoff," 
IEEE Transactions on Communications, vol. 57, no. 4, pp. 972-985, 2009. 

[18] A. Prudnikov, Y. Brychkov, and O. Marichev, Integrals and Series, Volume 3: More Special 
Functions. Gordon and Breach, Science Publishers, 1990. 


